1.我的电脑最近容易CPU超温 怎么回事?

2.CPU超温。我电脑只要运行游戏CPU就超温,但如果把游戏最小化温度就下来了,弄不明白了,请教高手!

3.cpu 超温错误

4.电脑散热不好导致硬件温度过高,会造成死机吗?

5.系统1区为何常常超温

电脑cpu超温错误_电脑系统cpu超温

前两天我遭遇了15年电脑应用的里程碑:我的cpu温度过高,和大家谈谈经验。前两天发现电脑莫名奇妙的死机(自动关机)或重启,而不是蓝屏,我认为一般蓝屏是系统有问题,bios有问题,或者主板上某个硬件的问题。但是,自动关机,基本上就是U的温度过高了。开始的解决方法:很简单,把电脑搬到凉快的地方,找了资料才知道,电脑是存在室外温度这个说法的,

开始我用的EVEREST Ultimate Edition这个软件测温度,温度高的吓人,而且根本没法做稳定性测试,一测1分钟就死机。温度高达70°以上,经常动不动就上90°,太吓人了。幸亏没烧坏。然后偶尔死机,可这样也不是个事儿,谁能把电脑一直放在窗台上,并且机箱也不装好呢。然后我分析了原因,前两天我爸主动给我清理灰尘?清理干净了吗?其实没有,表面上很干净了,灰尘反而落到散热片里面了,各位菜鸟可能和我一样,不知道,散热器上面得小四方风扇是可以拆下来的,这样就可以彻底的清理灰尘了,而且还可以上一点导热硅脂。经过这样一翻“修理”,温度果然爆降20多度。但是,我却没用以前那个软件,因为它很不准,我换了一个叫做speed fan的软件。

后来我妈玩开心农场的时候电脑也偶尔连续性死机?这是怎么回事,那个游戏不占u啊经过我的研究,原来,u上面的风扇开始的时候是不转的,是什么时候转?温度高的时候。如果你用软件或者主板集成的功能控制它,就会这样。但是我的那个功能肯定是坏了,有的时候U不转。我认为十有八九是因为那次清理灰尘,把灰尘落到风扇轴承里面,这样只能加润滑油解决问题。真麻烦,还得手动助推一下,风扇才转。这个时候我想到换个新风扇,新风扇多少钱?呵呵,告诉你,如果你是两年前的主流cpu或者更早,你买个30-45(带散热片的)之间的就绝对够用了,别傻傻的买100多块的,你的U没有那么大的散热量。现在我的电脑从来不死机,原来2.1hz轻松超频到2.4hz。我家是地热,散热可能不好,这也是原因之一。

所以我总是把电脑放在高处。。。。。治标不治本。

总之,清理灰尘看看能不能好,看温度最准的是在bios里面的pc health里面看cpu temperature这项,到底是多少温度.然后就是软件应用的时候?是否是两个u都在工作?你的导热硅胶涂均匀了吗?是不是已经好久都干的不像样了。另外,如果你用手摸散热片,烫的连一秒钟都挺不了,相信我,你的U也挺不了。快想办法吧,30块换个风扇还是等U坏了再花300多块买个新的u?

我的电脑最近容易CPU超温 怎么回事?

笔记本高温。需要先清洁笔记本的散热模组。

把出风口的灰尘清洁掉。

适当补充散热硅脂。

以上操做完成之后重新开机测试笔记本工作时的温度。

有条件可以加装一个散热底座,辅助笔记本散热。

如果这个时候笔记本的温度还是居高不下,那么就需要考虑更换散热风扇。

或者是散热模组了。

CPU超温。我电脑只要运行游戏CPU就超温,但如果把游戏最小化温度就下来了,弄不明白了,请教高手!

一个是CPU灰大,不是这的问题就是你的配置了,内存少是第一硬件,必须加,另一个就是不要满负荷操作,悠着用电脑。

Win78最基本能运行是4G内存,XP是2G内存,好用些加倍,如果您用的不是这个数,建议加内存(这是实践得出的数,不是理论的数)。

看在线视频时最容易出现死机、蓝屏、花屏、重启、自动关机的,请你谨慎操作。

下载谷歌等浏览器测试一下,如果好用,看视频、或浏览其它网页时就用这个软件,这些都是不用IE做内核的,与你用IE不冲突(最主要是浏览器不好用引起的,我是从实践中从多个浏览器中挑出来的,这个浏览器很著名,因为不容易崩溃,因为每个网页出问题不会影响整个浏览器,有问题请你追问我)。

另外还要注意在看的时候不要同时在干其他操作,如果是某网站本身的问题就换个时间段在看。

如果看的时间太长也容易出问题,自己的经验是,看一段时间重启一下电脑在接着看就没事了。

如果是用软件平台看在线视频更容易出现问题,没有更好的方法,如果是软件平台不好用就换换,换个时间段,在看的时候,不要在做其它操作,总之谨慎点操作。

如果是因为硬件引起的,一般是内存小、CPU温度高、网速慢等引起的,但是这不是主要的问题,主要是浏览器不好用,看视频的同时还在做其他操作等。

cpu 超温错误

游戏在运行的时候需要的资源比较打,内存显卡CPU 都是全速运行,当然温度就高,最小化就相当于脱离了游戏,所以就下来了,但是,正常是不应该这样的,看看你的风扇是不是正常工作,是不是需要加油啦?机箱内的灰尘大吗?如果还是不行就需要更换冷却了。 (还有电脑什么配置,玩什么游戏!也很重要)

电脑散热不好导致硬件温度过高,会造成死机吗?

这只是电脑的一个显示温度,本来是不会有这么高的温度的!!!有可能是你的电脑玩的太久了,出现这种重启。你的电源是不是有问题吗?温度过高有可能和主板有关系?P4的CPU发热是很大,最好拿去电脑城检测一下,这样是解决不了问题的?

系统1区为何常常超温

CPU温度太高,会导致系统不正常运行,出现死机等现象

一、如何查看看CPU的稳定

利用硬件检测工具,比如360的硬件大师软件!开启这个软件就可以自动扫描,CPU问题、硬盘温度等信息,我们可以很清晰看到哪个硬件温度高!硬件检测工具方面鲁大师软件也非常不错!

一般情况下CPU的温度在80度左右为正常温度,如果90-100的话,这温度就太高了,估计CPU本身就会出现硬件问题!

二、CPU温度高的解决方法

1.对于电脑机箱做一下简单的维护,清理一下机箱内部的灰尘,尤其是CPU,以及风扇附件的灰尘都要细心清理,然后对CPU重新涂抹硅胶。

2.给CPU的散热风扇加点润滑油,提高散热风扇的性能,如果觉得散热风扇风力不够强的话,建议更换一个新的散热能力的强的散热风扇!

3.在机箱上面加一个辅助的外置风扇,或者买一个小风扇对准机箱,加快机箱内部的散热!

4.检查一下电脑硬件配置方面,看下有没有需要升级的硬件。当我们玩网络游戏的时候,游戏的加载速度都非常的占用硬件资源,如内存,显卡,CPU等,所以有必要的话,可以对这些硬件升级,升级之后,之前的旧的硬件就不会在吃力的了,同时会加快游戏的运行放映速度,是一个不错的选择。

你的游戏不会是安装在C盘吧。。。

如果是的话那就比较严重了,这样的话就会使你的C盘出现超负荷而产生你所说的问题。。

另一种情况就是:

你的游戏所在盘剩余的空间不够多,或内存不够大

从而出现这样的问题。

超屏::

一般来说,CPU制造商都会为了保证产品质量而预留的一点频率余地,例如实际能达到2GHz的P4 CPU可能只标称成1.8GHz来销售,因此这一点CPU频率的保留空间便成了部分硬件发烧友们最初的超频的灵感来源,他们的目的就是为了把这失去的性能自己给讨回来,这便发展到了CPU的超频。

[b]如何超频[/b]

要说如何去超频就要先讲一下CPU频率设定的问题。CPU的工作时钟频率(主频)是由两部分:外频与倍频来决定的,两者的乘积就是主频。所谓外部频率,指的就是整体的系统总线频率,它并不等同于经常听到的前端总线(FrontSideBus)的频率,而是由外频唯一决定了前端总线的频率——前端总线是连接CPU和北桥芯片的总线。AMD系统前端总线频率是两倍的外率,而P4平台上是4倍的外率,只有在以前的老Athlon和PIII/PII平台上,前端总线频率才和外频相等。目前主流CPU的外频大多为100MHz、133MHz和166MHz,Intel基于200MHz外频(即FSB=800MHz)的P4才刚刚发布,而AMD公司800MHz前端总线的Athlon还没有发布。倍频的全称是倍频系数,CPU的时钟频率与外频之间存在着一个比值关系,这个比值就是倍频系数,是个简称倍频,倍频是以自然数为基础的数字,以0.5为间隔,例如11.5,12,13这类,现在最高的倍频能达到将近25。比如P4 2.8G CPU就是由133MHz的外频乘以21的倍频得到的。

超频从整体上来说,就是手动去设置CPU的外频和倍频,以使得CPU工作在更高的频率下,然而现在Intel的CPU倍频都是锁死的,而AMD AthlonXP也仅有很少数的产品是没有锁倍频的,因此现在的超频大多数都是从外频上面去做手脚,也就是提高外部总线的频率这个被乘数来使CPU的主频得以提高。

现在的主板厂商很多都作了人性化的超频功能,因此超频的方法也从以前的硬超频变成了现在更方便更简单的软超频。所谓硬超频是指通过主板上面的跳线或者DIP开关手动设置外频和CPU、内存等工作电压来实现的,而软超频指的是在系统的BIOS里面进行设置外频、倍频和各部分电压等参数,一些主板厂商还推出了傻瓜超频功能(例如硕泰克的红色风暴 RedStrom)就是主板可以自动以1MHz为单位逐步提高外频频率,自动为用户找到一个让CPU能够稳定运行的最高频率,这是一种傻瓜化自动化的超频。此外一些针对超频玩家而推出的主板还可能带有DEBUG指示灯为超频者在超频中提供指示与帮助,DEBUG指示灯[图DEBUG]就是板载在一块DEBUG卡,有两位7段数字的作为显示,计算机在启动过程中会自动顺序检测个部分硬件是否连接好并工作正常,如果哪一部分出现问题,就会在显示出该部分的代号,这样用户就可以很容易的按照手册找到出现问题的是哪个部分,便于超频者发现问题解决问题。如果最终没有问题,顺利启动通过,就会显示"FF"的字样,也指示一切正常。

[b]硬超频:

[/b]

现在采用纯跳线方式超频的主板已经没有了,代替它们的都是采用DIP开关这样的形式,而现在的CPU都是所频的,倍频设置都是主板自动侦测,因此一般倍频设置也被省略了。下面我们以磐英EPOX EP-4SDA+主板为例说明一下如何调节DIP开关来进行硬超频。

[img]

如图所示,在这款P4主板上可以看到四个印刷表格,仔细看一下,他们分别代表的是:SW1--AGP电压调节(AGP 4X);SW2--DDR内存电压(VCC2.5);SW3--CPU核心电压(CPU V-Core);SW4--CPU增加电压量(CPU VOLTAGE),此外还有JCLK1这个跳线,可以设定外频是100MHz、133MHz还是自动。

[img]

如果我们现在用一块P4 2.0GA CPU进行超频测试,它的规范频率设置应该是100MHz x 20=2000MHz,如果采用硬超频,就需要把外频从标准的100MHz提升到133MHz,而至于CPU是不是能以133外频工作(2.66GHz),那就是另一回事情了。从说明上[JP1-1.JPG]可以看到,默认的位置是3-4连接,也就是自动侦测CPU外频,我们需要把1-2短接,强制将外频设定在133MHz下!

[img]

改后如图所示,需要注意的是有三角标示的那一端为第一针,顺序不要搞混。

此外为了提高整体的稳定性,也是为了做示范,我们打算把CPU的核心电压和内存电压也都提高一些,而SW1的AGP电压就不改变了,因此我们还需要调节SW2、SW3和SW4这三个DIP开关。首先调节SW2的内存电压,DDR默认电压为2.5V,我们可以适当的提高到2.6V,如表格所示,

[img]

需要将默认状态的OFF-OFF-OFF改变成OFF-OFF-ON,修改后的SW2如图。

[img]

P4 CPU的标准电压为1.5V,我们打算将超频后的电压设定在1.65V,CPU实际的工作电压==BIOS设置+SW4的设置电压(SW3设为AUTO)==SW3设置电压+SW4的设置电压(BIOS设置为DEFAULT)。现在BIOS设置为默认电压,那么需要调整SW3和SW4的设置。SW3默认设置都是OFF,我们打算将电压设置为1.55V,按照主板上所示,我们需要把1四个开关都置于ON的状态下,调整好了以后如图

[img]

[img]

另外的SW4-CPU增加电压量上我们也要设置成+0.1V,因此根据图中所示,

[img]

我们还需要把SW4的第一个开关放在ON的位置上,调整前后的SW4如图。

[img]

[img]

硬超频部分的工作就这么多了,下面你要做的工作就是检查一下硬件各部分的连接,准备尝试开机了。

[b]2.软超频:

[/b]

软超频就是开机以后进入系统的BIOS中,进行超频设置的过程。进入BIOS的方法是开机以后按下DEL键或是F1键就直接进入主板的BIOS中了,不同BIOS版本的主板进入方式会有一些不同之处,

Award BIOS,进入方式为按下DEL键;而Phoenix BIOS大多是要按下F1键来进入。不同BIOS版本,不同的平台中软超频的设置方式也存在一些差异,在此我们以Award BIOS、AMI BIOS和Phoenix BIOS三种最常见的BIOS版本为例,平台则是两个P4平台,一个XP平台,介绍的内容包括手动的软性设置与红色风暴这种自动超频方法。

Award BIOS(SiS645芯片组--P4平台)

我们打算软超频CPU还是这块P4 2.0GA,开机会按下DEL键进入BIOS主菜单,BIOS主菜单画面如图

[img]

进行软超频的设置在右边一栏的第一行"Frequency/Voltage Control",我们进入这个菜单中,进入后的主画面如图。

[img]

首先我们先来调整CPU的外频,利用键盘上的"上下"按键使光标移动到"CPU Clock"上面,然后按一下回车键,就会出现如图的菜单,

[img]

手动输入想设置成的CPU外频数值,在此允许输入数值范围在100-200之间,可以以每1MHz的频率提高进行线性超频,最大限度的挖掘CPU的潜能。原则上来讲,第一次超频CPU因为不清楚CPU究竟可以在多高的外频下工作,因此设置外频的数值可以以三至五兆赫兹为台阶提高来慢慢试验,在此为了示范,直接将外频设置成了133MHz这个标准外频,设置了正确的外频数字以后再按回车键确定。

第二步再来设置一下内存总线的频率,这是在"CPU:DRAM Clock Ratio"中进行选择

[img]

这里面设置的是外频与内存总线频率的比值,可以选择"4:3""1:1"和"4:5"三个,如果你使用的是DDR333内存,那么它的标准运行频率可以达到166MHz,刚才我们已经把外频设置成了133MHz,因此在此可以选择"4:5",让内存也运行在最高的水平,如果你使用的是DDR266内存,可以设置成"1:1"让二者同步工作,也可以还设置成"4:5",然后再加一些内存电压,尝试一下超频内存。

第三个步骤是调节CPU的核心电压,如果要想让CPU在一个高频率下工作,通常都需要适当的加一点儿电压来保证CPU的稳定运行。这在"Current Voltage"项目里面设置,如图:

[img]

P4 CPU的额定核心工作电压为1.5V,通常不超过1.65V的电压都是安全的,当然超频提高电压是要在保证稳定工作的前提下,尽可能的少加电压,这是从散热方面考虑为了将CPU的温度尽可能的控制在低水平下。电压也可以一点一点儿的逐渐尝试提高,不必急于一步到位,在此我们先选择1.55V尝试一下。请注意超过1.70V的电压对于北木核心的P4来说都是危险的,有可能会烧坏CPU,因此电压不宜加的过高!

第三步不是必须的,就是来提高给DDR内存供电的电压,DIMM模组的默认电压为2.5V,如果内存品质不好,或是也超频了内存,那么可以适当提高一点内存电压,加压幅度尽量不要超过0.5V,后则有可能会损坏内存。由于我们在此用的是DDR333内存,完全可以在166MHz下正常运行,因此只是示意性的选择了增加0.1v,如图所示。

[img]

最后,在这里面还可以看到给AGP显示卡提高工作电压的选项,如果你超频是为标准外频,也让显示卡超频工作了的话,那么可以考虑适当提高一些AGP的电压,AGP默认电压为1.5V,在此我们也示意性的提高了0.1V,最后用户最好再来检查一下设置有没有错误。

[img]

如果无误的话,那么就可以按ESC键,退出这个菜单了。最后存入CMOS设置再退出,重新启动。

如果超频不成功或是机器重新启动后没有点亮,那么需要关闭计算机,利用主板上的CMOS跳线清除CMOS信息,再开机重新设置;另一种方法是关闭计算机后,一直按住键盘上的Insert按键开机,直到点亮了以后再松开,这两种方法都可以让超频失败的计算机重新点亮。

[b]AMI BIOS(Intel 845PE芯片组--P4平台)[/b]

上面我们已经介绍了P4 CPU的软超频方法,这部分来介绍一种傻瓜化的自动超频技术——红色风暴。这种技术是某主板厂商开发的一种自动超频功能,使用它以后,主板会以1MHz为增加量,自动逐步提高外频来侦测CPU最高的稳定运行频率,而让用户免去了反复尝试外频,反复重新启动、清除CMOS等烦恼,因此说这是一种傻瓜化的超频技术,有些相似于照相中的傻瓜相机和普通手动相机之间的差异。

[img]

进入这个主板的BIOS以后,可以从上图看到这是采用AMI BIOS的主板,三个厂商的BIOS版本中的基本内容都是差不多的,只是它们之间存在一些微小的差别,这并不妨碍我们在BIOS中进行软超频的工作。不过并不是所有主板都提供了软超频方面的功能,目前主板厂商里面,EPOX、Abit、Asus、Soltek、双捷Albatron等厂商的主板产品在这方面做得不错。下面让我们来看一下这个Red Strom红色风暴技术。

在上图的BIOS主页面上,从左边一栏最下面的"Frequency/Voltage Control"中进入主板的超频选项里面,进入后的页面如图[Redstrom-1.jpg]。在"CPU Ratio Selection"里面显示的是CPU是锁频的,因此倍频不能被更改。而主板在"CPU Linear Frequency"里面也提供了手动调节CPU外频的功能,在CPU Linear Frequency改为Enable以后,就可以手动更改CPU的外频了,如图:

[img]

也可以以1MHz为增加量,手动调节线性提高外频。

在最上面可以看到有"Redstrom Overclocking Tech",这就是要介绍的红色风暴超频技术,进入以后就会看到如图

[img]

上图提示的,说明你已经进入红色风暴超频项目中,按下回车键便开始红色风暴的自动超频。按下Enter键以后,接下来系统自动会1MHz、1MHz的缓慢提高外频,大约每一秒钟提高1MHz,直至红色风暴所认为CPU能承受的最高工作频率为止,这块P4 2GA CPU利用红色风暴在不加电压的前提下超频,外频能逐步达到120MHz最终停止,在终止频率下系统会暂停5秒钟左右,接下来系统就会自动重新启动。

超频爱好者们大多还是喜欢手动调节外频来寻找CPU的最佳超频极限,而红色风暴可以作为一种参考依据来用。这款主板没有提供CPU电压调节功能,因此在这块主板上测试的CPU超频极限势必没有在提高电压后超频来的高,因此红色风暴也有优点有缺点,在此为大家介绍一下仅供参考。

[b]Phoenix BIOS(nForce2芯片组--Athlon XP平台)[/b]

在介绍过了两个Intel CPU平台的超频以后,我们来看一下AMD Athlon XP处理器的超频情况,我们选择的主板是颇具超频功能的nForce2芯片组的EPOX主板,它的BIOS版本为Phoenix公司的,也是为了让大家全面了解一下各个不同版本BIOS之间的异同之处。CPU采用的是最新的Barton核心的XP 3000+处理器,内存依然为Kingston DDR333内存。

[img]

如图所示,这是Phoenix BIOS的主页面,虽然在里面看不到"Frequency/Voltage Control"的项目,但是频率调节和超频功能依然有,它们被分散在了其他的几个项目之中。首先进入"Power BIOS Features"项目中。

[img]

在这里面有三个选项,分别是调节CPU、AGP和内存模组电压的。XP3000+的默认电压是1.65V,工作在13x倍频下,默认的前端总线频率(FSB)为166MHz,它的实际工作频率是2,158MHz==13 x 166。我们打算尝试一下200MHz的前端总线频率,把它设置在11 x 200==2.2GHz这样的频率下工作,电压也稍微提高一些,同时打算让DDR333内存运行在200MHz的频率下,等同于DDR400。在此我们先提高0.1V的CPU核心电压,这样XP就工作在了1.75V。

[img]

因为也超频了内存,因此也需要适当的提高一些内存电压,在此将DIMM电压提高到2.77V,增加量0.27V,如图。

[img]

在此不增加AGP电压了,这些设置好以后可以按ESC退出这个选项。接着退回到主界面以后,进入"Advanced Chipset Features"项目。

[img]

如图,这是 Advanced Chipset Features项目的默认设置,在里面我们可以改变CPU的外频、倍频和内存的运行频率。首先先要改变一下"System Performance"项目,将它改变为"Expert"专家模式,全手动设置状态。

[img]

接着和我们前面说到的一样,在"CPU Clock Ratio"中改变CPU倍频,在"FSB Frequency"中改变外频频率,新倍频设置为11,新外频设置为200MHz,改变如图。

[img]

在"Memory Frequency"里面设置的是一个百分数,这个数值其实是内存运行频率和外频的比值,因为设置后的外频已经达到了200MHz,因此内存频率和它同步就已经达到DDR400的工作频率了,所以设置为100%就可以了,如果错误的设置为"200%",那么内存实际工作频率就达到了400MHz,这相当于DDR800内存了,多么可怕的频率啊!"Memory Timings"里面可以进一步详细设置内存的各种数值参数,在CPU的部分就不过多介绍了。设置完成以后检查一下是否有错误,

[img]

确认无误后ESC键退出该菜单,最后存储CMOS设置信息,退出BIOS重新启动就可以了。

[b]超频的影响与危害[/b]

不同频率的CPU都是以一定的额定功率工作的,因此正常的工作下就势必会产生热量,然而为了便于理解,在CPU发热方面大家甚至可以把它想象成一个电热丝,而对体积很小的CPU来说,如果散热不好,在局部的热量积累就很可能产生很高的温度,从而对CPU造成危害。这里需要说明的是,一定温度内的高热并不会直接损坏CPU,而是因高热所导致的“电子迁移现象”会破坏了CPU内部的芯片组织体系;而过高的电压却有可能将一些PN结和逻辑门电路击穿造成CPU永久性的损坏。理论上说“电子迁移现象”是绝对的过程,然而它发展速度的快慢就是程度的问题了,如果能保证CPU内部的核心温度低于80℃,这样就不会减缓电子迁移这一物理现象的发生。再快速的电子迁移过程也不会立即毁掉你的CPU,而是一个“慢性”的过程,这个过程的最终结果就是缩短CPU的寿命。

什么是电子迁移现象呢?“电子迁移”是50年代在微电子科学领域发现的一种从属现象,指因电子的流动所导致的金属原子移动的现象。因为此时流动的“物体”已经包括了金属原子,所以也有人称之为“金属迁移”。在电流密度很高的导体上,电子的流动会产生不小的动量,这种动量作用在金属原子上时,就可能使一些金属原子脱离金属表面到处流窜,结果就会导致原本光滑的金属导线的表面变得凹凸不平,造成永久性的损害。这种损害是个逐渐积累的过程,当这种“凹凸不平”多到一定程度的时候,就会造成CPU内部导线的断路与短路,而最终使得CPU报废。温度越高,电子流动所产生的作用就越大,其彻底破坏CPU内一条通路的时间就越少,即CPU的寿命也就越短,这也就是高温会缩短CPU寿命的本质原因。

此外伴随着超频的还会带来一些不稳定因素,这要从几方面来说。一方面是CPU的散热,超频后的CPU功率要比标准频率下大,因此伴随的发热量也要比标准频率大,如果多散发出来的热量不能及时有效的传递走,那么势必会造成CPU温度的升高,比如超频前CPU工作在38度,而超频后的CPU却有可能工作在48度。CPU长时间在高温下工作,稳定性方面的就会大折扣,也就是CPU在五六十度这种高温度下工作时的出错几率要远高于在三四十度下的工作出错几率。

另一方面,超频者往往不能将外频保证工作在100MHz、133MHz或是166MHz这种标准频率下,因为PC系统中除了系统总线以外,还有AGP显示卡的AGP总线频率,PCI总线频率、内存总线频率等其他和系统总线频率相关的总线速度,而这些频率有的是可以独立调节的,有的却要由系统总线的频率来决定。PCI和AGP的标准频率是33MHz和66MHz,比如在100MHz外频下,为了让PCI和AGP工作在标准的频率下,PCI对系统总线就是1/3分频,而AGP对系统总线就是2/3分频;而在133MHz外频下,它们的分频则可以分别设置成1/4和1/2,一样可以保证PCI和AGP总线分别运行在33MHz和66MHz的标准频率下。如果超频者将系统外频设置为120MHz,那么按照1/3和2/3分频的设置,PCI和AGP就分别运行在40MHz和60MHz下,随之,连接在PCI总线上的硬盘、声卡、网卡和SCSI卡等产品也就运行在了40MHz下,而连接在AGP总线上的显示卡就会运行在60MHz下,这与这些部件是不是能够超过他们的标准运行频率来稳定运行呢?这谁也没法保证,硬盘可能会出现读写错误、声卡可能没法正常发声、网卡和SCSI卡可能会出现无法使用的情况,而显示卡有可能会花屏或是致使系统死机,因此超频至非标准外频下势必会造成这种周边部件的不稳定性。如果超频者能将超频后的频率也达到100MHz、133MHz或是166MHz这种标准频率,那么周边部件就一样会以标准频率运行,因此就不会出现上面所说的这种不稳定性因素了,所以建议超频者能让超频后的PC依然运行在标准外频下以保证周边部件的稳定性和可靠性。

详解电脑超频的五大害处

超频后果一:CPU功耗增加

现在所有CPU的芯片都是由CMOS(互补型金属氧化物半导体)工艺制成。CMOS电路的动态功耗计算公式如下:

P=C×V2×f

C是电容负载,V是电源电压,f则是开关频率。

因为超频带来的CPU频率的增加,会造成动态功耗随频率成正比增长。而在超频的过程中,为了让CPU能够工作在更高频率上,常见的手段之一就是加电压。而这更加快了功耗增长的速度。

假设一块额定频率为1GHz、额定电压为1.5V的CPU其动态功耗为P0 。经过超频以后,工作电压加压到1.65V,稳定运行在 1.3GHz ,此时其动态功耗为P1。因为CPU制成以后,其电容值C也就基本固定,可以看作常量,也就是说超频前后的电容值C相等。

可以得到: P0 = 1.5 ×1.5×1 ×C = 2.25C (W)

P1 = 1.65×1.65×1.3×C = 3.54C (W)

两式相除得到: P1/P0 = 3.54C / 2.25C = 1.573

此式的意义是,这款超频后的CPU较未超频时,其动态功耗增加了57.3% ,因为对CMOS电路来说,静态功耗相对于动态功耗较小。因此其动态功耗的增长率近似为CPU总功耗的增长率。也就是说假设原来的CPU额定功率仅为60W,经加压超频后此时也将达到近95W ! 如果不更换更好的散热设备,将不可避免的引起CPU工作温度的上升。当处理器温度超过最大允许值,轻则无法正常工作,严重则导致CPU烧毁。

超频后果二:电迁徙

在前些年在提及超频后果的时候,经常会提起电迁徙(有人称为电子迁移)造成的危害。在半导体制造业中,最早的互连金属是铝,而且现在它也是硅片制造业中最普通的互连金属。然而铝有着众所周知的由电迁徙引起的可*性问题。

由于传输电流的电子将动量转移,会引起铝原子在导体中发生位移。在大电流密度的情况下,电子不断对铝原子进行冲击,造成铝原子逐渐移动而造成导体自身的不断损耗。在导体中,当过多的铝原子被冲击脱离原来的位置,在相应的位置就会产生坑洼和空洞。轻则造成某部分导线变细变薄而电阻增大,严重的会引起断路。而在导线的另一些部分则会产生铝原子堆积,形成一些小丘,如果堆积过多会造成导线于相邻导线之间发生连接,引起短路。不论集成电路内部断路还是短路,其后果都是灾难性的。电迁徙或许是集成电路中最广泛研究的失效机制问题之一。

超频的结果会使通过导线的电流增大,引起的功耗增加也会使芯片温度上升。而电流和温度的增加都会使芯片更容易产生电迁徙,从而对集成电路造成不可逆的损伤。因此长期过度超频可能会造成CPU的永久报废。

曾经有人这样反映:CPU超频到某个频率后,经过近一年的使用一直都很稳定。但是后来有一天就发现了CPU已经无法在这个频率上继续稳定工作。造成这种现象的原因,很可能是过度超频而散热措施不好,尽管CPU体质不错,在较高的温度下也能超到一个较高的频率。但是恶劣的工作环境和超负荷的工作让CPU内部发生严重的电迁徙。虽然没有造成短路或者断路,但是导线已经严重受到损伤,导线电阻R增大,最终引起布线延时RC(和布线电阻和布线电容有关)增加,导致时序错乱影响CPU正常工作。

一方面CPU集成的晶体管密度的不断提升,造成芯片中的导线密度不断增加,导线宽度和间距不断减小;另一方面CPU频率不断提升,功率逐渐加大而电压却在减小。CPU运作需要更细的导线去承载更大的电流,铝互连的应用日益受到挑战。因此更低电阻的铜互连将在集成电路的设计和制造中逐步取代原有的铝工艺。

很重要的一点是,铜具有良好的抗电迁徙的特性,几乎不需要考虑电迁徙问题。而目前市面上出售的CPU基本都已采用铜互连工艺。在AMD的Athlon(Thunderbird核心)和Intel的P4(NorthWood核心)发布以后的CPU都采用了铜互连技术,因此大多数人可以不必再为电迁徙而过于担心。

超频后果三:信号变差

前面说过,CPU是信号处理器,主要功能是对数字信号进行处?/ca>