vivado对电脑系统的要求-vivado2015.4使用教程
1.zynqmp 怎么将linux系统下载到emmc
2.用数据来说明,Vivado的效率提高到底有多少
3.求助vivado2017.1 使用IDE下的部分重加载闪退
4.vivado的错误求教,求个解决方案
zynqmp 怎么将linux系统下载到emmc
1,vivado硬件配置,要选择EMMC代表的SD1;
2,编译petalinux:执行petalinux-config。
(1)选择Subsystem AUTO Hardware Setting
-> Advanced bootable images storage settings
->boot image settings;
选择primary flash,这里是将BOOT.bin设置为从qspi flash启动
(2)选择Subsystem AUTO Hardware Setting
-> Advanced bootable images storage settings
->kernel image settings;
选择primary sd,进入后我们看到这里实际就是设置image.ub的存放区域。
(3)选择Image Packaging Configuration,设置启动启动文件系统所在位置;
在设置启动方式的时候,如下两张图这样设置读取根文件系统的位置/dev/mmcblk1p2。
(4)设置你的驱动然后编译,依次执行:petalinux-config -c kernel;petalinux-config -c rootfs;
petalinux-build;petalinux-package --boot --fsbl ./images/linux/zynq_fsbl.elf --fpga --u-boot --force;
3,做之前先分区(把EMMC分区),先做一个SD卡启动的petalinux文件,
petalinux系统在zynq上面启动起来以后就进行如下分区:即是mmcblk1分为mmcblk1p1和mmcblk1p2
具体步骤如下:
(1) 把EMMC进行分区,执行命令: fdisk /dev/mmcblk1
(2)使用n命令,添加一个新的分区
Command (m for help): n
Command action
e extended
p primary partition (1-4)
选择p,添加主分区
,(3)选择分区号,选择1,
Partition number (1-4): 1 // 选择分区号
First cylinder (1-238592, default 1): Using default value 1 // 选择分区的第一个柱面,选择1
Last cylinder or +size or +sizeM or +sizeK (1-238592, default 238592): Using default value 238592 // 选择最后一个柱面
注意:1-238592,first要选第一个数,last要选择的比238592小,其中1024就是表示1M
(4)使用t命令,设置分区格式
Command (m for help): t
Selected partition 1
Hex code (type L to list codes): b
Changed system type of partition 1 to b (Win95 FAT32)
(5)使用w命令,保存配置,必须保存配置
Command (m for help): w
The partition table has been altered.
Calling ioctl() to re-read partition table
(6)使用对应文件系统工具对分析进行格式化(只能在debian里面才能识别命令)
mkfs.fat /dev/mmcblk1p1 设置为fat32格式
mkfs.ext4 /dev/mmcblk1p2设置为ext4格式
注意:执行完w命令然后才算分区成功,执行完mkfs命令才算格设置内存属性成功。
以上分区完成后,可以使用p命令,显示分区信息;也可以使用用d命令表示删除分区
Command (m for help): p
Disk /dev/mmcblk0: 7818 MB, 7818182656 bytes
4 heads, 16 sectors/track, 238592 cylinders
Units = cylinders of 64 * 512 = 32768 bytes
Device Boot Start End Blocks Id System
/dev/mmcblk0p1 1 238592 7634936 83 Linux
(7)执行这句:mkdosfs -F 32 /dev/mmcblk0p1
当然,可以重复上述步骤,多分几个区,用来存放不同的状态:
FLASH要要用来存放BOOT.bin
第一个分区用来存放image.ub或者设备树(比如uImage和devicetree.dtb)等文件;--可以设置为128MB
第二个分区用来存放用户数据(比如可执行程序);可以设置为2048MB
第三个分区用来存放程序执行需要的库文件(opencv的库,qtcreator库,相机库,视频编码解码库等);剩余的1个多GB
4,把系统同步到ext4里面
先把sd卡里面系统挂载进来 :mount /dev/mmcblk0p2 /mnt
再把刚刚弄好的系统挂进来: mount /dev/mmcblk1p2 /tmp , 然后cd /mnt
然后进入把SD卡里面的系统同步到emmc里面:rsync -av ./* /tmp ,时间有点久,直到结束为止。
(要是不用SD卡也可以挂载U盘,解压,然后进行系统同步到EMMC所挂载的地方/tmp)
5,然后将BOOT.BIN和image.ub烧录到QSPI-FLASH中
首先擦除QSPI-FLASH:flash_eraseall /dev/mtd0
存放BOOT.bin到flash : flashcp BOOT.bin /dev/mtd0
此处若是将image.ub写入emmc的FAT分区中(不存放到flash中),先使用mount挂载eMMC的FAT分区,
然后将image.ub使用cp指令拷贝进 /mnt/mmcFat即可,也就是把uImage 拷贝到 /dev/mmcblk1p1;
进入uImage所在目录,然后执行 cp uImage /tmp;也就是把uImage存放到了 /dev/mmcblk1p1里面。
6,最后断电拔出SD卡,将拨码开关设置为flash启动,就能看到petalinux启动起来;
7,报错及其解决办法
————————————————
版权声明:本文为CSDN博主「寒听雪落」的原创文章,遵循CC 4.0 BY-SA版权协议,转载请附上原文出处链接及本声明。
原文链接: style="font-size: 18px;font-weight: bold;border-left: 4px solid #a10d00;margin: 10px 0px 15px 0px;padding: 10px 0 10px 20px;background: #f1dada;">用数据来说明,Vivado的效率提高到底有多少
自从去年10月Xilinx发布ISE14.7之后,ISE套件便暂时没有了更新计划,相当于进入了软件生命中的“中年”;而当初在2012.x版本还作为ISE套件中的一个组件的Vivado,此时已经如早上8、9点钟的太阳一样冉冉升起:因为随着FPGA/SOC制造工艺、硬件单元规模和设计方法的不断改进,传统的基于ISE的设计方法已经逐渐不能满足我们的要求了。所以针对新的Artix-7/Kintex-7/Virtex-7芯片,Xilinx都建议我们使用全新设计的Vivado套件来进行开发(使用Spartan-6的筒子可以在新设计中考虑向Artix-7过渡了)。此外,因为ISE套件已经没有升级计划表,所以对新的操作系统也无法支持了,例如在Win8/8.1上面,ISE14.7几乎无法完美运行,而从Vivado2014.1版本就开始全面支持了。
直观的来看,我理解的Vivado套件,相当于把ISE、ISim、XPS、PlanAhead、ChipScope和iMPACT等多个独立的套件集合在一个Vivado设计环境中,在这个集合的设计流程下,不同的设计阶段我们采用不同的工具来完成,此时Vivado可以自动变化菜单、工具栏,可以显著提高效率:因为不需要在多个软件间来回切换、调用,白白浪费大量的时间。基于Vivado IP集成器(IPI),则把我们对硬件的配置更好地集成到我们的设计中,既极大地提高了对IP的使用和管理,也帮助我们减小了软件和硬件(例如ZYNQ器件的PS)之间的隔阂。Vivado HLS则可以把现有的C代码,在一些特定的规范下直接转换为可综合的逻辑,这也将极大地提高我们实现和移植现有算法的速度。
因为Vivado套件较为复杂,所以先用一个对比测试,来检验一下它们之间的性能差别。采用的测试环境是:
操作系统:win7 sp1x64
CPU:I7-4770k,开启超线程,全部超频至4.3GHz
ISE: 14.7
Vivado:2014.1
使用的芯片:ZYNQ系列中的xc7z020-clg400-2(设计全部在PL中实现)
待测试程序:一个用来做实时仿真的模型(算下来有140424行Verilog代码)。为了减小硬盘的延迟影响,操作系统和软件都安装在SSD上面,而把工程文件放在RAMdisk上面(因为综合、实现的过程都需要大量的小文件读取操作)。
运行的测试:输入正确的工程,但是清理所有工程文件,这样就可以从0开始完成所有的综合、翻译、映射、布局布线和升级bit流文件的所有操作;使用的策略则全部用默认策略。
首先,在ISE上运行,测试开始时间是7:33:10,生成.bit文件的时间是7:37:01,共花费了231秒。
然后,在Vivado上运行。为了方便测试,在Vivado套件里直接导入ISE的工程,源文件都可以正常导入,但是约束文件需要重新配置,因为ISE使用的ucf格式,而Vivado则升级为更先进的xdc格式,需要全部重写约束文件。不过这也不是特别困难的事情,例如管脚约束的转换就比较容易:
例如,ucf为:
NET "gateway_out1[0]" LOC = Y12;
NET "gateway_out1[0]" IOSTANDARD = LVCMOS18;
xdc则为:
set_property PACKAGE_PIN Y12 [get_ports {gateway_out1[0]}]
set_property IOSTANDARD LVCMOS18 [get_ports {gateway_out1[0]}]
为了快速转换,用查找/替换可以较快的完成其中的一部分转换。
然后在Vivado中点击reset runs,如图1所示,这样会清除所有潜在的已经生成的结果(清除综合的结果时可以选择自动清除实现的结果)。
图1 reset runs
为了充分发挥Vivado套件的潜力,在tcl console里输入下面的脚本:
set_param general.maxThreads 8
这样就可以充分发挥最大的CPU潜力了(例如DRC检查可以使用全部的线程进行并行操作)。然后运行产生比特流的操作,开始时间是8:15:20,生成.bit文件的时间是8:17:12,共花费了112秒。
对比ISE的231秒,可以看出Vivado使用的时间只有ISE的48.5%。俗话说,“时间就是金钱”,“效率就是生命”,Vivado只用了不到ISE一半的时间就完成了这个复杂工程的全部实现过程,数据非常有说服力。当然Vivado使用的内存貌似比ISE多了几百MB,但是对于现在配置中等的机器都可以达到8GB内存的情况下,这点内存的差距还是可以忽略的。(好马配好鞍,电脑的这点投资和高端的芯片带来的性能提升和time-to-market减小相比,可以说是微不足道的了)。
图2 ISE完成时间
图3 Vivado完成时间
图4 ISE资源占用
图5 Vivado资源占用
对比使用的资源:默认策略下,二者使用的Slice寄存器类似;Vivado使用的LUT稍多,但是没有使用DSP48E1单元,而ISE使用了12个,相当于Vivado用一部分LUT完成了DSP单元的功能,这与综合/实现的策略有关。可以认为在默认策略下,Vivado和ISE产生结果的资源利用率打了个平手,还可以通过调整综合/实现的策略达到资源利用率的优化。当然,Vivado相对ISE有个显著的优势,就是Vivado可以一次运行多种不同的策略,从而使得我们一次性获取各种策略的结果,这样的“半自动化”的优势是ISE完全不具备的。
求助vivado2017.1 使用IDE下的部分重加载闪退
电脑有以下原因可能产生软件闪退的问题:
1、操作系统问题:存在漏洞或bug,可通过修复漏洞或重装系统来解决;
2、软件兼容性问题:有些软件有系统要求或环境要求,比如系统要是32或64位、dot net要哪个版本、jre需要哪个版本等等,这个问题只要参照软件说明设置就可以解决;
3、软件bug:软件有bug,此问题只能默哀了,只能期待软件开发商早点修复了。
4、硬件故障:维修或更换;
5、内存不足:内存空间溢出,关闭一些程序,或加大内存。
希望能帮助到你!
vivado的错误求教,求个解决方案
请问原来不这样吧?如果是,出事前您在电脑上干了什么,下载什么了,什么东西有异常,如果想起什么追问我说说,如果您自己也不知怎么引起的,建议还原系统或重装。
Win7810还原系统,右击计算机选属性,在右侧选系统保护,系统还原,按步骤做就是了,如果有还原软件,自带的映像备份,并且进行了备份,也可以用软件、映像备份还原系统。
有问题请您追问我。
声明:本站所有文章资源内容,如无特殊说明或标注,均为采集网络资源。如若本站内容侵犯了原著者的合法权益,可联系本站删除。